Promonique
Promonique
EPR Subscription Banner
EPR Subscription Banner
Promonique Banner
Promonique Banner
Home » News » Rare observation in hidden structure in crystals brings new paradigms for advanced energy solutions

Rare observation in hidden structure in crystals brings new paradigms for advanced energy solutions

By Staff Report October 28, 2024 6:29 pm

Rare observation in hidden structure in crystals brings new paradigms for advanced energy solutions
.

The findings suggest that understanding these thermodynamic subtleties can lead to intriguing structural transformations with broad applications.

Researchers have made a rare observation where the local crystal structure symmetry, or the arrangement of atoms in the immediate vicinity of a given atom in a crystal, reduces upon warming, contrary to the usual trend of symmetry of crystal structures increasing with rising temperatures. The study underlines the significance of chemical design in triggering unconventional phenomena in crystalline materials useful for phononics, thermoelectrics, and solar thermal conversion.

Symmetry breaking plays a crucial role in fundamental chemistry and physics. A familiar manifestation of this phenomenon is the transition of a gas to a liquid and eventually to a solid upon cooling, with each phase transition involving a symmetry reduction. Thermodynamic factors like entropy (a measure of disorder) and enthalpy (a measure of total energy stored) of a system determine how the system responds to changing conditions like temperature fluctuations.

Traditionally, it is believed that as a material is heated, it tends to adopt a higher crystal symmetry due to the favourable increase in entropy. However, recent findings by Kanishka Biswas, Ivy Maria, Paribesh Acharyya, and other team members at the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, an autonomous institute of the Department of Science and Technology, challenge this conventional understanding, especially at the local structural level of a crystal.

The local structure of a crystal is the arrangement of atoms near a given atom in a crystal, typically within the collection of the first and second nearest neighbour atoms around a specific atom, technically known as the first and second atomic coordination environments, respectively.

In an ideal crystal, the local structure mirrors the global structure, but in certain rare cases, they can diverge. This is precisely what the team observed in an all-inorganic two-dimensional halide perovskite, Cs2PbI2Cl2, that belongs to the family of Ruddlesden-Popper halide perovskites (a class of materials with a specific crystal structure).

Contrary to the usual trend where heating increases symmetry, this compound exhibits a decrease in local symmetry with rising temperature, while the global crystal symmetry remains unchanged. This occurs due to configurational averaging, where the distorted local symmetries average out at longer length scales, leaving the global structure intact.

Advertising

EPR Android App Banner

This phenomenon of local symmetry breaking upon heating is termed “emphanisis,” meaning “appearing out of nothing.” The team employed an advanced synchrotron X-ray technique that simultaneously reveals both the local and global structures of solids from their X-ray diffraction patterns to investigate emphasis.

The synchrotron X-ray experiments were done in DESY, Hamburg, Germany, under the India-DESY collaboration supported by the Department of Science & Technology (DST), India.

The researchers traced this unusual local symmetry breaking to the stereochemically active lone pair of lead in the compound.

Interestingly, Cs2PbI2Cl2 accommodates two types of structural distortion: static distortions in chlorine atoms and dynamic distortions in lead atoms. These distortions result from the complex interplay between different structure-distorting effects driven by the interactions between the mixed halide (Cl and I) motif and the active lone electron pair of lead in Cs2PbI2Cl2. The distortions happen because of a competition between a mix of structure-distorting forces that arise because of the interaction of different parts of the material (the mixed anions Cl and I) with the lone electron pair on the lead atoms in CsPbI₂Cl₂.

The high-temperature “emphanitic” phase is characterised as a disordered distorted state, existing at the intersection of an ordered undistorted state and an ordered distorted state.

“Emphanisis” is a promising strategy for achieving intrinsically low lattice thermal conductivity in crystalline materials. Such materials are highly sought after for their fundamental importance and diverse applications, including phononics, thermoelectrics, solar thermal conversion, and various heat management systems.

Cookie Consent

We use cookies to personalize your experience. By continuing to visit this website you agree to our Terms & Conditions, Privacy Policy and Cookie Policy.

Android App
Android App
EPR EMagazine October 2024
EPR EMagazine October 2024
EPR EMagazine October 2024

Events

Windergy
Windergy
PTC Asia
PTC Asia
Malls Development MENA Forum
Malls Development MENA Forum
Distribution Utility Meet
Distribution Utility Meet
Auto EV India
Auto EV India
Global Sustainability Expo & Conference
Global Sustainability Expo & Conference
Elecxpo
Elecxpo
India Smart Utility Week
India Smart Utility Week
RenewX
RenewX

Our Sponsors