A new hybrid material designed for carbon capturing
By EPR Magazine Editorial April 12, 2022 1:45 pm IST
By EPR Magazine Editorial April 12, 2022 1:45 pm IST
A group of scientists have computationally designed a hybrid material which can absorb greenhouse gas methane, converting it to clean Hydrogen and also simulated a process of capturing carbon dioxide in-situ and converting it to high purity hydrogen from non-fuel grade bioethanol. They have also designed a facility that can test such materials and help further carbon capture research at the institute.
Given the global warming potential of greenhouse gases, scientists are trying to explore innovative methods of absorbing these gases and converting them to useful substances. New materials that can play dual role of absorption as well as conversion is the new challenge area for scientist in carbon capture innovation.
Responding to the challenge, in a series of researches on carbon capture and utilisation scientists from Indian Institute of Chemical Technology (IICT), Hyderabad have not only computationally designed a hybrid material that can capture methane and also act as catalyst to convert it to high purity hydrogen, but also simulated and designed a process for in situ capture of carbon dioxide and its conversion to high purity hydrogen from non-fuel grade bioethanol through a mechanism called the optimised intensified chemical looping reforming. The later research has been published in the Elsevier journal Chemical Engineering and Processing.
2 production based on the modelling and preliminary experimental studies.The FBR facility has been successfully commissioned recently in Jan 2022 at CSIR-IICT, Hyderabad, under a Mission Innovation Project supported by Department of Science and Technology to IICT Hyderabad. It is unique and available for the first time in the country to test the performance of dual functional materials for SESMR in fluidised bed reactor system. SESMR offers specific advantages of in-situ CO2 removal through sorbents and thereby overcomes the equilibrium limitations of steam reforming and leads to high purity H2 production.
Potential dual functional materials identified from theoretical predictions are now being synthesised and simultaneously FBR operating conditions are being optimised for existing sorbent/catalyst materials for meeting increasing challenges of carbon capture and utilisation and associated research.
We use cookies to personalize your experience. By continuing to visit this website you agree to our Terms & Conditions, Privacy Policy and Cookie Policy.