Promonique
Promonique
EPR Subscription Banner
EPR Subscription Banner
Promonique Banner
Promonique Banner
Home » Power Brand » System-based transformer protection testing

System-based transformer protection testing

By Staff Report October 16, 2024 7:39 pm

System-based transformer protection testing
.

In system-based testing, a system topology with a power transformer model is used to simulate the relevant power system scenarios, such as faults, inrushes or over excitation.

System-based testing increases the protection testing quality and simplifies the process of commissioning and testing of all kinds of protection systems at the same time. Let know more how to simplify a transformer protection system test using system-based testing with OMICRON RelaySimTest.

The transformer differential application presenting several challenges and numerous features are employed in relay algorithms to compensate for these challenges. As a result, developing appropriate test quantities and properly quantifying results can be challenging with traditional settings-based testing.

The System-based Test Setup

In system-based testing, a system topology with a power transformer model is used to simulate the relevant power system scenarios, such as faults, inrushes or over excitation. The included transformer model can be parametrised from nameplate data and it can simulate all relevant phenomena with sufficient accuracy.

Compared to settings-based testing, the test setup is much simpler, as all of the details of the simulation are taken care of by the transformer models included in the software. The only required data are the CT ratios and the transformer nameplate data:

  • Vector group
  • Rated voltages
  • Rated power
  • Short circuit voltage or short circuit impedance
  • No-load current
  • Core-type

Defining the Test Scenarios

Now all the test scenarios can be defined in a much simpler way thanks to the power transformer model: 

  • For instance, instead of defining a 2nd harmonic content, the energisation of the power transformer at various closing angles can be simulated
  • Or instead of defining a differential & restraining current, through-faults and internal differential zone faults can be simulated

All scenarios can be defined within a single-line diagram of the transformer and the surrounding power system.

  • The differential relay is not supposed to trip for normal load current or faults outside of the differential zone. Thus, a test often begins with a test case for stability. In order to define such a fault in the software, the fault is simply dragged from a toolbar and dropped on the bus.
  • To test the differential trip, the fault can be dropped on the power transformer.
    For a turn-to-ground fault close to the starpoint (< 5%) a differential element might not be sensitive enough, therefore a Restricted Earth Fault (REF) element, if applied, will pick up the fault. 

Same for turn-to-turn faults with both terminal close to each other, the differential element might not be sensitive enough, therefore a negative sequence element may pick up this type of fault.

  • To test stability during inrush both breakers are in an open state. Within the test case an event will close the breaker, which will cause an inrush condition. By changing the closing angle, the amount of inrush in each phase can be altered.

Apart from these major test cases, many more real-world scenarios can be tested e.g. sympathetic inrush, fault during inrush, external faults with CT saturation and overexcitation due to overvoltage.

Advertising

EPR Android App Banner

Images

C:\Users\chrpri00\AppData\Local\Temp\RelaySimTestScreenshots\Power System (0000).png

Topology with the power transformer model

Fault incident during energization

Sympathetic inrush due to energization of parallel transformer

CT Saturation during external fault

Since RelaySimTest can control multiple test sets from one PC software, three-winding transformers or REF protection can be tested without rewiring the test setup. Protection schemes for phase shifting transformers can be tested the exact same way, without adding complexity. Line protection systems, where the transformer is within the protected zone, can also be easily tested.

System-based Testing of other Protection Schemes

Even tests where the relays are in different or far away locations can be executed with ease from within a single instance of RelaySimTest. 

The simulation capabilities included in RelaySimTest currently include:

  • accurate simulation of busbar protection systems
    feeder protection systems
  • line protection systems
  • and logic schemes

The simulation capabilities included in RelaySimTest continue to evolve. 

Cookie Consent

We use cookies to personalize your experience. By continuing to visit this website you agree to our Terms & Conditions, Privacy Policy and Cookie Policy.

Power Talk
Webinar
Webinar
Android App
Android App
EPR EMagazine November 2024
eMagazine November 2024
eMagazine November 2024

Events

Auto EV India
Auto EV India
Global Sustainability Expo & Conference
Global Sustainability Expo & Conference
Elecxpo
Elecxpo
India Smart Utility Week
India Smart Utility Week
RenewX
RenewX

Our Sponsors

CPRI
CPRI
Wika
Wika
Mahindra Powerol
Mahindra Powerol
NangalaWala
NangalaWala
Ramelex
Ramelex
Ambionics India
Ambionics India
Vasundhara Earthing
Vasundhara Earthing
Voltaredox
Voltaredox
Jayashree
Jayashree
Rayzon Solar Pvt Ltd
Rayzon Solar Pvt Ltd
Om Technical Solutions
Om Technical Solutions
Akansha
Akansha
NBC Bearings
NBC Bearings
Harting
Harting
Doble Engineering
Doble Engineering
Kusam Meco
Kusam Meco
Nirmal
Nirmal
Apar Industries
Apar Industries
Aramco Asia
Aramco Asia
Fluke
Fluke
Emka India Panel Accessories
Emka India Panel Accessories
KEI Industries Limited
KEI Industries Limited
Meco Instruments Pvt Ltd
Meco Instruments Pvt Ltd
Godrej Boyce
Godrej Boyce
Icon Solar-En Power
Icon Solar-En Power
ZIEHL ABEGG
ZIEHL ABEGG
Novasys
Novasys
Ramanuj Industries
Ramanuj Industries
Testo India
Testo India
Paras Wires
Paras Wires
Dirak India
Dirak India
Fronius India
Fronius India
Gloster Cables Limited
Gloster Cables Limited
K-Lite Industries
K-Lite Industries
Newtech Switchgear
Newtech Switchgear
Rectifiers & Electronics
Rectifiers & Electronics
Elev8 Lift
Elev8 Lift
Power trac Group
Power trac Group
flir system
flir system
Omicron
Omicron
Dhash
Dhash
CAT
CAT
Electrical Research Development Association
Electrical Research Development Association
Schneider Electric
Schneider Electric
Triveni Turbine ltd
Triveni Turbine ltd
Kirloskar Pumps
Kirloskar Pumps
Polycab
Polycab
Electrotherment
Electrotherment
Aeron Composite Pvt Ltd
Aeron Composite Pvt Ltd
Powerica LTD
Powerica LTD