Ganz Electric
Ganz Electric
TCI
TCI
EPR Subscription Banner
EPR Subscription Banner
Home » Renewables » Fuelling e-mobility with breakthroughs in battery technology

Fuelling e-mobility with breakthroughs in battery technology

By June 25, 2024 6:11 pm IST

Fuelling e-mobility with breakthroughs in battery technology
.

EV battery innovations boost vehicle range, performance, energy density, & charging speeds by lowering costs, improving infrastructure, and driving greener transportation solutions.

Spokesperson: Dr Vikas Nimesh, Principal Research Associate, Alliance for an Energy – Efficient Economy (AEEE)

How do breakthroughs in EV battery technology enhance vehicle range and performance?

Breakthroughs in EV battery technology, such as the development of solid-state batteries and advancements in battery management systems (BMS), significantly enhance vehicle range and performance. Solid-state batteries offer higher energy density, leading to longer driving ranges and faster charging times. Improved BMS ensures optimal battery usage, extending lifespan and maintaining performance. Other promising technologies include lithium-sulphur batteries, which offer higher energy capacity, and silicon-anode batteries, which increase energy density and charging speed. Innovations like lightweight materials and advanced thermal management systems contribute to improved safety and reliability. Additionally, advancements in manufacturing processes and material efficiency reduce costs, making EVs more affordable and accessible.

How can the charging infrastructure network improve for the benefit of users, and how has digitalisation impacted it?

The charging infrastructure network is being improved by expanding fast-charging stations, enhancing digitalisation through mobile applications, and utilising IoT-enabled chargers and smart grids. These advancements reduce charging times, increase convenience, and encourage more people to switch to electric vehicles, enhancing the overall user experience.

How can we optimise the recycling and disposal of EV batteries for sustainable practices?

Advertising

EPR Android App Banner

Optimising the recycling and disposal of EV batteries involves developing efficient methods for recovering valuable materials like lithium, cobalt, and nickel. Advanced recycling techniques, such as hydrometallurgical and pyrometallurgical processes, improve the yield and purity of recovered materials. Promoting second-life applications for used batteries in stationary energy storage systems extends their lifecycle and reduces waste. Establishing clear regulations and standards for battery disposal and recycling ensures that these practices are environmentally sustainable, reducing the ecological impact of EV batteries.

How can government policies drive advanced battery development and renewable integration?

Government policies drive advanced battery development through R&D funding, tax incentives, and subsidies. Regulatory frameworks like emission standards, norms, and recycling mandates stimulate market demand. Public-private partnerships and global collaborations enhance resources and knowledge. Infrastructure and strategic roadmaps ensure a strong supply chain and policy consistency. Education and certification programs cultivate skilled workforces and consumer trust. Collaborative efforts among governments, industries, and research boost innovation, accelerating the adoption of advanced batteries and renewable integration. Indian initiatives like PM Solar Rooftop and Solar Parks schemes bolster the sustainable EV transition through solar energy promotion.

How do we integrate renewables with EV charging for a greener transportation ecosystem?

Integrating renewables into EV charging involves using solar and wind energy to power stations, reducing fossil fuel reliance. Second-life EV batteries balance renewable supply with smart grid tech for stable energy. Smart charging adjusts to renewables, optimising efficiency. Developing renewable-powered stations with storage supports this, alongside V2G tech. Government incentives and partnerships refine and scale these efforts, reducing EVs’ carbon footprint and promoting clean energy use in transportation.

The advancement of EV battery technology, from solid-state batteries to advanced BMS, is a significant step towards sustainable transportation. If these technologies are integrated with renewable energy sources, they will make clean, efficient transportation more accessible.

Cookie Consent

We use cookies to personalize your experience. By continuing to visit this website you agree to our Terms & Conditions, Privacy Policy and Cookie Policy.

Android App
Android App
EPR eMagazine January 2025
EPR eMagazine January 2025
EPR eMagazine January 2025

Events

India Smart Utility Week
India Smart Utility Week
India Energy Week
India Energy Week
RenewX
RenewX
Wiretech 2025
Wiretech 2025
India Green Energy Expo
India Green Energy Expo

Our Sponsors

Greenfinity Powertech Pvt Ltd
Greenfinity Powertech Pvt Ltd
Vasundhara Earthing
Vasundhara Earthing
Rayzon Solar Pvt Ltd
Rayzon Solar Pvt Ltd
Om Technical Solutions
Om Technical Solutions
NBC Bearings
NBC Bearings
Harting
Harting
Adani Solar
Adani Solar
Kusam Meco
Kusam Meco
Nirmal
Nirmal
Apar Industries
Apar Industries
Meco Instruments Pvt Ltd
Meco Instruments Pvt Ltd
Novasys
Novasys
AEW
AEW
Cabex India
Cabex India
K-Lite Industries
K-Lite Industries
Clariant India
Clariant India
Sun Bond
Sun Bond
Supremesolar
Supremesolar
Vsole Solar
Vsole Solar
Elev8 Lift
Elev8 Lift
flir system
flir system
Omicron
Omicron
Dhash
Dhash
Kirloskar Pumps
Kirloskar Pumps
Polycab
Polycab
Electrotherment
Electrotherment
Aeron Composite Pvt Ltd
Aeron Composite Pvt Ltd
MENNEKES Electric India
MENNEKES Electric India
PRAMA HIKVISION INDIA
PRAMA HIKVISION INDIA
Automatic Electric Ltd
Automatic Electric Ltd
TDK Electronics
TDK Electronics